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Abstract—Keystroke dynamics authentication is not as
widely used compared to other biometric systems. In recent
years, keystroke dynamic authentication systems have gained
interest because of low cost and integration with existing
security systems. Many different methods have been proposed
for data collection, feature representation, classification, and
performance evaluation. The work presents a detailed survey
of the most recent research in keystroke dynamic authenti-
cation. Research is evaluated by the conditions under which
data was collected, classification algorithms used, and system
performance. This work also identifies some shortcomings of
the current research issues that need to be addressed for
keystroke dynamics to mature. Some recommendations for
future research are made, with the goal of improving keystroke
dynamics system performance and robustness.
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I. INTRODUCTION

Computers have become a staple in our everyday lives.

We heavily depend on computers to store and process

sensitive information. Intruders are everywhere, and capable

of attacking an individual’s or large organization. As a result,

keeping information secure from intruders has become a

central question in computer security. It would be desirable

to develop a foolproof measure against unauthorized access

of information.

User authentication is one of the first lines of defense

in preventing unauthorized access. Password-based authen-

tication is by far the most common method to protect

data from intruders. Although some password rules, such

as the combination of capital letters, special character(s),

and digit(s), make them it hard to crack, these are also

difficult for the user to remember. Additional mechanisms

are needed to enhance or replace the security of password-

based authentication.

Like written signatures, typing patterns contain

individually-unique neuro-physiological patterns. Biometric

recognition based a users typing rhythm is not only

noninvasive, but also cheap and transparent [49]. Moreover,

it is very easy to capture data as keyboards are common

and no special hardware is necessary. Data can be also be

captured after the initial authentication for in-application

continuous authentication.

Keystroke dynamics have advantages such as low cost,

transparency to the user, and being noninvasive, as well

as being able to provide continuous authentication. How-

ever, the main disadvantage of keystroke dynamics is low

accuracy when compared to other biometric systems [71].

Current research aims at improving the accuracy in the

keystroke biometric authentication systems. This study out-

lines the design and performance of existing keystroke

biometric systems by considering factors such as: how

the data is captured, preprocessing and feature extraction

methods, and classification algorithms. By understanding the

performance and limitations of various existing systems, this

work proposes some guidelines to enhance the accuracy and

performance of keystroke dynamics biometric system.

The structure of this paper is as follows. Section II

depicts some related works in surveying biometric authenti-

cation system. Section III explains the keystroke biometric

authentication system and evaluation criteria. Section IV

includes the finding of this survey and compares different

classification methods. Finally, Section V concludes the

survey with recommendations and future research directions.

II. META-SURVEY

Using keystroke dynamics (KD) for authentication is a

relatively new concept compared to other biometric systems,

and there have been several other survey works on this topic.

In mid 2004, A. Peacock et al. [55] evaluated KD systems

based on classifier accuracy, usability, and privacy. They

suggested that performance of a KD system is greatly influ-

enced by the number of samples. They also recommended

the creation of public datasets and introduction of schemes

that ensure privacy of collected data.

Another KD survey was conducted by H. Crawford [14]

in 2010. The author reviewed a representative subset of

concurrent research in KD and provided recommendations

for future work. The survey found that high quality results

from different researchers were obtained by neural network

pattern classification. The study also recommended not to

use same participants as both authorized and unauthorized

users when evaluating system performance.

An extensive survey of KD research was conducted by

S. P. Banerjee [6] in 2012. The survey compared different

algorithms used in KD systems and discussed explicitly the

factors that affect system performance. The study concluded

that KD authentication systems have potential to grow in the
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Figure 1. Typical keystroke dynamics authentication system architecture.

area of cyber-security and biometric monitoring since it is

both non-intrusive and cost-effective.

A similar surveying of KD research was conducted by

Teh et al. [71] in 2013, where the authors claimed that KD

is unlikely to replace existing authentication mechanisms

entirely. They concluded that some properties, such as the

ability to operate in stealth mode, low cost, high user

acceptance, and ease of integration with existing security

systems, made KD promising.

III. KEYSTROKE DYNAMICS OVERVIEW

A typical KD authentication system consists of six com-

ponents including: data collection, feature extraction, fea-

ture classification/matching, decision making, retraining, and

evaluation. Figure 1 shows an overview of a typical KD

authentication system.

Data collection is the first step in any KD system. Raw

data can be collected via various types of keyboard. Previous

KD systems have collected data using devices ranging from

normal keyboard [48, 45] to pressure sensitive keyboards

[51]. Refs. [68, 13] used a modified keyboard that can detect

pressure. Other works have used a special purpose number-

pad [38, 24], mobile device [11, 60] and touchscreen device

[30, 2]. Due to the limited number of publicly available

data sets [20, 37], many researchers collected their own

data and the number of participants varies greatly. There

were 1254 participants involved in [15] experiment, 118

in [74], and only 3 in [44]. Many works have used 10-20

participants [71]. Most data consist of character-based texts,

although some have used purely numerical input [43], or

mixed input [30]. Sample sizes are generally categorized as

either short-text or long-text. Short-text can be a username

[53], password [40], or pass-phrase [7], while long-text can

be a paragraph [77].

After raw data is collected, it may undergo preprocessing,

followed by feature extraction. Features can generally be

classified into two groups: Dwell time (DT), the time be-

tween the press and release of a key, and Flight time (FT),
the time between the press or release of two consecutive

keys. There are four different types of FT features with

the most common bing press-press, press-release. In some

systems, three or more consecutive keystroke events are

used. Other time-based features are frequency of typing

errors and typing rate.

The most important step of a KD system is the classifi-
cation phase, where extracted features are to make an au-

thentication decision. Both statistical and machine-learning

techniques have been used, with an increasing trend of

machine learning over statistical. At present, the Support

Vector Machine (SVM) seems to be the most popular

classification method due to better higher accuracies with

less computational intensity.

Although many works have not explicitly considered re-

training, Hosseinzadeh et al. [28] have proposed an adaption

algorithm that constantly renews a user’s template. This is

motivated by the possibility of a user’s typing pattern to

change with time and environment.

The performance of a biometric system is generally

characterized by the receiver operating characteristic (ROC)

curve. It can be summarized by the equal error rate (EER),

the point on the curve where the fall acceptance rate (FAR)

and false rejection rate (FRR) are equal. Other system evalu-

ation criteria include efficiency, adaptability, robustness, and

convenience.

IV. SURVEY

A. Statistical approaches

Table I summarizes KD research that has utilized a

statistical approaches, such as mean, standard deviation, Eu-

clidean distance, degree of disorder. Identification accuracy

(ACC) is reported as the proportion of correctly identified

users.

Gunetti et al.’s experiment focused on using the degree

of disorder [26] and combination of degree of disorder,

mean, and SD [25]. By combining mean and SD, they

achieved less false acceptance rates but higher false rejection

rate. Kang et al. [34] used a combination of k-means and

Euclidian distance, with a 3.8% EER. Giot et al. [21] used

Bayesian decision theory and Euclidean distance features,

and achieved 4.28% EER. In another research [19], using

Bayesian, Euclidean, and Hamming distance, they achieved

EER 6.96%. A comparison between keystroke dynamics on

personal computers and smartphones was done by Uno An-

dre Johansen [31]. The study concluded that the performance

on smartphones is less than a MK if only timing features

are used. If other smartphone sensors are used, performance

became better than the MK.

B. Machine learning approaches

Table II summarizes KD systems based on pattern recog-

nition and machine learning techniques, such as Random

Forest Decision Tree, SVM, and k-nearest neighbor, while

Table III summarizes works that have used neural networks.

Some works have implemented new approaches [4] using
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Table I
AUTHENTICATION AND IDENTIFICATION BASED ON STATISTICAL APPROACHES

Paper Year Participants Features Freedom Type Method Device Result (%)
[32] 1990 33 FT Yes Short Mean, STD MK FAR: 0.25, FRR:16.36
[48] 1997 31 DT, FT Yes - Weighted mean, STD MK ACC: 90
[25] 2005 205 FT Yes Long Degree of Disorder, Mean, STD MK FAR: 0.5, FRR: 5
[26] 2005 31 FT Yes Long Degree of Disorder MK FAR: 1.99, FRR: 2.42
[74] 2006 118 DT, FT Yes Long Euclidian Distance - ACC: 97.9
[24] 2008 30 DT, FT, P - Digit Euclidian Distance NP FAR: 15, FRR: 0, EER: 10
[11] 2009 30 - - Text Statistical MP EER: 13
[44] 2009 3 - - Digit Mean, STD MP ACC: 90
[21] 2009 16 DT,FT No Short Bayesian, Euclidean MK EER: 4.28
[36] 2010 51 DT, FT No Short Manhattan distance MK EER: 7.1
[62] 2011 189 DT, FT No Long Weighted Euclidian, array disorder MK FAR: 0.01, FRR: 3
[33] 2011 51 FT No Long Euclidian Distance MK EER: 0.84
[66] 2011 20 FT No Long Euclidian Distance MK FAR: 2, FRR: 4
[56] 2011 50 FT No Long Degree of Disorder MK EER: 10
[31] 2012 42 DT, FT, P - Digit Degree of Disorder MK, TS Better: MK(timing feature)

Table II
AUTHENTICATION AND IDENTIFICATION BASED ON PATTERN RECOGNITION AND MACHINE LEARNING APPROACHES

Paper Year Participants Features Freedom Type Method Device Result (%)
[17] 1980 7 FT No Long t-Test MK ACC: 95
[7] 1990 26 FT Yes Short Baysian, Minimum Distance clas-

sifier
MK FAR: 2.8, FRR: 8.1

[58] 1998 10 DT, FT Yes Short Inductive Learning Classifier MK FAR: 9, EER: 10
[49] 2000 63 DT, FT Yes - KNN MK ACC: 83.2-92.1
[29] 2002 7 DT, FT - Digit KNN, MLP NP EER: 78-99
[75] 2003 21 DT, FT Yes Short MLP, SVM MK FAR:0, FRR: 0.814
[51] 2004 41 DT, FT No Short Random forest decision tree MK EER: 2
[28] 2004 41 DT, FT Yes Short Gaussian mixture modeling MK FAR: 4.3, FRR 4.8, EER: 4.4
[38] 2005 9 DT, FT,P - Digit ANOVA MK EER: 2.4
[59] 2006 20 - - Digit Hidden Markov model MK EER: 3.6
[57] 2007 30 DT, FT No Short Sequence alignment algorithms MK FAR: 0.2, FRR: 0.2, EER: 0.4
[34] 2007 21 DT, FT Yes Short k-means, Euclidian MK EER: 3.8
[3] 2007 24 DT, FT Yes Long SVM MK FAR: 0.76, FRR: 0.81, EER: 1.57

[42] 2007 5 P - Digit SVM MK FAR: 0.95,FRR: 5.6
[69] 2010 35 FT No Long Kolmogorov-Smirnov MK EER: 7.55
[65] 2010 21 DT, FT Yes Long Random forest decision tree MK FAR:3.47, FRR:0, EER: 1.73
[43] 2010 28 DT, FT - Digit Random forest decision tree MK FAR: 0.03, FRR: 1.51, EER:1
[76] 2010 120 DT, FT - - KNN MK EER: 1.00
[70] 2010 100 DT, FT Yes Text KNN, Euclidian MK EER:2.7
[45] 2011 55 - Yes Long Spearmans’s foot rule distance

metric
- FAR: 2.02, FRR: 1.84

[72] 2011 100 DT, FT No Short Gaussian PDF, Direction similarity
measure

MK EER: 1.401

[67] 2011 30 DT,FT No Digit KNN - EER: 0.5
[39] 2011 117 DT, FT Yes Short SVM MK EER: 11.83
[23] 2011 100 DT, FT No Short SVM MK EER: 15.28
[5] 2011 33 DT, FT No Long Naive Bayesian MK EER: 1.72

[46] 2013 40 - - - KNN, Euclidian Distance MK ACC: 88.2-91.5
[73] 2013 152 FT, DT, P, FA - Digit k-means MP FAR: 4.19, FRR: 4.59
[18] 2014 300 FT, DT - Short SVM TS TPR= 92, FPR= 1
[30] 2014 30 FT, DT, P, FA No Digit SVM MK, TS EER (MK): 10.5, EER (TS): 2.8

MK - Mechanical Keyboard, MP - Mobile Platform, TS - Touchscreen, NP - Number Pad, STD - Standard Deviation, LVQ - Linear Vector Quantization

different methods. Table IV summarizes the works that have

used a combination of different algorithms.

Harun et al. [27] used a Multilayer Perceptron (MLP) neu-

ral network to recognize authentic users and reject impostors

with more than 80% accuracy. Antal et al. [2] examined

keystroke data with and without touchscreen-based features

(pressure and finger area). Performance was obtained using

several algorithms, such as Nave Bayes, Bayesian Network,

C4.5(J48), K-NN(IBk), SVM, Random forest, and MLP. The

best performance was achieved by Random forest, Bayesian

nets, and SVM respectively. The addition of touchscreen-

based features to timing features increased accuracy by 10%

for each classifier. The study showed that the lowest error

(12.9%) was obtained by Manhattan distance using both

timing and touchscreen-based features. Similar to Antal et

al. findings, Jain et al. [30] studied the combination of

timing and non-timing features. Data was collected from

30 participants over several days and one-class SVM for

classification. They achieved a 10.5% EER using timing

features, 3.5% EER using non-timing touchscreen features,

and 2.8% EER using all features. The result suggests that

performance on a smartphone touchscreen is superior to that

on hardware keyboards.

Zack et al. [76] developed a long-text input KD system

that collected data over the Internet. They collected data

from 120 participants and achieved a 1% EER. Higher per-

formance was obtained with a closed system of known users

than an open system. A similar experiment was conducted

by Maxion et al. [43], where 28 users typed the same 10

digit number using only the right-hand index finger. The

authors used a random forest classifier and achieved a 10%

EER. Saevanee et al. [61] studied KD combined with finger
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Table III
AUTHENTICATION AND IDENTIFICATION BASED ON NEURAL NETWORKS

Paper Year Participants Features Freedom Type Method Device Result (%)
[8] 1993 24 FT Yes Short Perceptron MK FAR: 8, FRR: 9

[12] 1999 10 DT, FT - Short RBFN MK ACC: 97
[54] 2007 100 DT, FT No Short MLP MK FAR:1, EER: 8
[41] 2007 100 DT, FT, P - - ARTMAP-FD MK EER:11.78
[13] 2007 32 FT Yes Long FF MLP MP EER: 12.8
[61] 2009 10 DT,FT,P - Digit Probabilistic Neural Network TS EER: 1
[68] 2009 30 DT, FT,P - - RBFN MK FAR: 2
[1] 2009 7 P - - Multilayer feed Forward MK FAR:0, FRR: 0

[35] 2010 25 FT, DT - Digit Back Propagation NN MK ACC: 92.8
[50] 2010 20 DT, FT, P - - Fast ANN MK FAR: 4.12, FRR: 5.55
[16] 2014 13 FT, DT, P, FA - - ANN TS FAR: 14 FRR: 2.2

Table IV
AUTHENTICATION AND IDENTIFICATION BASED ON HEURISTICS AND COMBINATION OF DIFFERENT ALGORITHMS

Paper Year Participants Features Freedom Type Method Device Result (%)
[52] 1995 15 DT, FT Yes Short ART-2, RBFN, LVQ MK EER: 0
[64] 2005 43 DT, FT No Long Decision trees, Monte Carlo MK FAR: 0.88, FRR: 9.62
[77] 2006 - DT,FT No Long Decision tree c4.5.j48 MK ACC: 93.3
[10] 2006 20 - - Digit Euclidian, Mahalanobis, FF-MLP TS FAR: 0, FRR: 2.5
[60] 2009 25 DT, FT Yes Short Gauss, Parzen, K-NN, K-mean MK EER: 1.00
[22] 2009 100 DT, FT No Short Bayesian, Euclidean, Hamming

distance
MK EER: 6.96

[4] 2013 30 - Yes Long Dichotomy Classifier, LOOCV - EER(Pass): 8.7, EER(Num): 6.1
[2] 2014 42 FT, DT, P, FA No Short Naive, Bayesian, C4.5(J48), KNN,

SVM, MLP, Random forest
MP EER: 12.9

[63] 2014 10 P - digits J48, Naive Bayes,K*, MLP TS ACC: 84.2

MK - Mechanical Keyboard, MP - Mobile Platform, TS - Touchscreen, NP - Number Pad, STD - Standard Deviation, LVQ - Linear Vector Quantization, RBFN
- Radial Basis Function Network, MLP - Multilayer Perceptron

pressure. The study showed a 99% ACC was achieved using

finger pressure. Since each user entered a different phone

number, only the FRR could be measured.

C. Limitations

Many works used a small number of participants, and

they were mainly students, researchers, or academic staff.

None of the researches were conducted on users with low

typing proficiency. Touchscreen features such as pressure

and finger area, have only been considered under tightly

controlled environments, and ignore such effects as using

different devices. In many works, data was collected in

only one session. Most research ignores template aging,

and it is not clear how the system would perform over

time as a user’s behavior changes. Many researchers have

collected their own data because publicly available KD

benchmark databases are very limited. Many studies used

fixed text and the same keyboard for enrollment and testing.

Researchers sometimes fail to justify a choice of algorithm

for classification and verification and provide no explanation

one method is superior to other.

V. RECOMMENDATIONS

Most KD studies have used subjects from institutes,

including students and faculty. This subset is unlikely to

be representative of the greater population. Additionally, the

consideration of other demographic factors, such as age,

gender, and education level, may help understand and predict

the performance of a KD system. One of the key points

for better performance in a KD system is introducing new

classification algorithms and feature engineering. Features

should be designed to be platform-independent. As more

sensors are considered, fusing data from various sources also

becomes a problem.

Many researchers have not paid attention to the compu-

tational cost of training and testing a KD system. A robust

KD system should be responsive, especially if the applica-

tion requires real-time interaction. Several works have been

conducted on free or long text input, but they have used

only English as the primary language of communication.

An investigation of the portability to other languages is

warranted. Future research should also place greater em-

phasis on mobile devices with a vast array of sensors.

Many devices support multi-touch screens, pressure sensitive

panels, accelerometers, and gyroscopes, all of which could

be incorporated into a KD system.

Data collection in most studies was performed over a

relatively short period of time. The typing behavior of

individuals may change due to age, health condition, or

emotional state. Only recently have we seen studies that

attempt to detect cognitive load from typing behavior [9]

and how user handicaps affect KD system performance [47].

Finally, developing benchmark datasets for the KD au-

thentication will be a promising future research. KD datasets

should consider variables such as input device, input type,

and input length, so that KD systems can be evaluated

based on these criteria. Future work should also attempt to

offer an explanation why a particular method achieves better

performance. Development of a standardized protocol for

KD systems might help make different works comparable.

KD research is still in the initial stage and a very limited

number of researches have been conducted so far compared
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to other biometric systems. Although it has advantages such

as low cost, transparency, noninvasive for the user, and

continuous authentication, it has low accuracy compared to

other biometric systems.
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